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This work proposes a method for finding the critical values of several linear test hypoth-
esis criteria in the context of the general multivariate linear model by using the existing
tables in the literature. The exact distribution of a certain criterion announced as new
by Olson (1974), but really defined by Wilks (1932), is studied. Some errors in two of
the criteria obtained by Wilks (1932) are detected and corrected. The moments and the
exact distribution of Dempster’s test criterion are found. At the end, an example of the
literature determines all of the criteria and their test.

1. Introduction. Consider the general multivariate linear model

Y = Xβ + ε (1)

where: Y ∈ <n×p is the matrix of the observed values; β ∈ <q×p is the parameter matrix; X ∈ <n×q

is the design matrix or the regression matrix of rank r ≤ q; ε ∈ <n×p is the error matrix which has
a matrix variate normal distribution, specifically ε ∼ Nn×p(0, In ⊗ Σ); ⊗ denotes the Kronecker
product; and Σ ∈ <p×p, Σ > 0. For this model, we want to test the hypothesis

H0 : CβM = 0 versus Ha : CβM 6= 0 (2)

where C ∈ <νH×q of rank νH ≤ r and M ∈ <p×g of rank g ≤ p. As in the univariate case, the
matrix C concerns to the hypothesis among the elements of the parameter matrix columns, while
the matrix M allows hypothesis among the different response parameters. The matrix M plays a
role in profile analysis, for example; in ordinary hypothesis test it is taken to be the identity matrix,
M = Ip.

Let SH be the matrix of sums of squares and sums of products due to the hypothesis and let SE

be the matrix of sums of squares and sums of products due to the error, and both defined like this

SH = (Cβ̃M)′(C(X′X)−C′)−1(Cβ̃M)
SE = M′Y′(In −XX−)YM

respectively; where β̃ = X−Y and X− is any generalised inverse of X such that X = XX−X. Be-
sides, under a null hypothesis, SH has a g-dimensional Wishart distribution with νH degrees of free-
dom and parameter matrix M′ΣM, i.e. SH ∼ Wg(νH ,M′ΣM); similarly SE ∼ Wg(νE ,M′ΣM)1.

∗AMS 2000 Subject Classification: Primary 62E15: Secondary 62H10
Key word and phrases: Multivariale linear model, likelihood ratio test, Wilks’s criteria, Olson’s criterion, Gnanade-
sikan’s criterion, Pillai’s citerion, Roy’s criteria, Anderson’s criterion, Pillai’s trace, Lawlwy-Hotelling trace, Demp-
ster’s criterion, new Pillai’s criteria.

1For this time we will take M = Ip. But, if this is not the case under consideration, the following results of the
paper just appear by substituting p by g.
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Now, let λ1, · · · , λs be the s = min(νH , g) non null eigenvalues of the matrix SHS−1
E such that

0 < λs < · · · < λ1 < ∞ and let θ1, · · · , θs be the s non null eigenvalues of the matrix SH(SH +SE)−1

with 0 < θs < · · · < θ1 < 1; here we note λi = θi/(1 − θi) and θi = λi/(1 + λi), i = 1, · · · , s. Var-
ious authors have proposed a number of different criteria for test the hypothesis (2). But as it is
known, see for example Kres (1983), all the test can be expressed in function of the eigenvalues λ′s
or θ′s. In our experience, a reason for which many of these test statistics are not used is due to
lack and/or inaccessibility of tables for the respective critical values. In this work the three test
statistics proposed by Wilks (1932) are studied after correcting some errors in the published density
functions. We emphasize that two of those statistics were proposed as new by Roy et al. (1971)
(U -statistics) and Olson (1974) (S-statistics). Besides we show how to obtain the critical values
for the U -statistics starting form the tables of Wilks’s Λ statistics. The density of the S-statistics
is derived by three different methods. The exact distribution of another test criterion proposed
by Pillai (1955) is found. The moments and the exact distribution for the Dempster statistics are
gotten. At the end, this work solves a problem of the literature computing all the published test
statistics studied including the S-statistics, also we propose the way for finding the critical values
for the remaining test criteria. We will begin from the published tables in literature; the critical
values of the S-statistics are found by using the tables here derived.

2. Wilks’s criteria. Unfortunately, there is not homogeneity in the symbol of the test statistics,
moreover, some of them were renamed creating more confusion. For example, the most known
statistics of Wilks is the W , but in the literature is defined as Wilks’s Λ, however Anderson (1982,
p. 299) denoted it by U , but Wilks (1932) named with that symbol another of the statistics. In
order to avoid any confusion in notation we return to the original notation of Wilks (1932) and we
define the three criteria in this way:

Λ = W =
|SE |

|SE + SH | =
s∏

i=1

1
1 + λi

=
s∏

i=1

(1− θi) Wilks (1932, p. 485)

U =
|SH |

|SE + SH | =
s∏

i=1

λi

1 + λi
=

s∏

i=1

θi Wilks (1932, p. 482)

S =
|SH |
|SE | =

s∏

i=1

λi =
s∏

i=1

θi

(1− θi)
Wilks (1932, p. 486)

Curiously the U -statistics was proposed as a new statistics in the literature by Roy et al. (1971, last
paragraph p. 72) with the same original notation of Wilks (1932). Similarly, the third statistics was
proposed as new by Olson (1974); here we used that notation.

Moreover, Wilks (1932) proposed integral expressions for the densities of the three statistics, but
even when the general expression for the W and the U statistics are correct (Wilks (1932, eq. (5),
p. 475)), the density for W (Wilks (1932, eq. (35), p. 486)) is wrong. Maybe this fact explains the
inconsistences of some particular expressions for the densities of W published by Wilks (1935), such
as it is corroborated by Consul (1966) when the results are compared with the results obtained by
Anderson (1982, p. 308). The error in the density of W in Wilks (1932) is the exponent of the term
(v1v2 · · · vn−1) which appears as (p− 2)/2 and it should be(p− 3)/2. By using our notation

Wilks’s notation Our notation
N νH + νE + 1
p νH + 1
n p
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where νE = N − p. The right density of W is

fW (w) =
Γp[(νH + νE)/2]

Γp[νH/2]Γp[νE/2]
w(νE−p+1)/2−1(1− w)pνH/2−1

Z 1

0

· · ·
Z 1

0

p−1Y
i=1

v
(νH−2)/2
i

×
p−1Y
i=1

(1− vi)
(p−i)νH )/2−1

× [1− v1(1− w)]−(νH−1)/2[1− {v1 + v2(1− v1)}(1− w)]−(νH−1)/2

× [1− {v1 + v2(1− v1) + v3(1− v1)(1− v2)}(1− w)]−(νH−1)/2 · · ·
× [1− {v1 + v2(1− v1) + · · ·+ vp−1(1− v1)(1− v2) . . . (1− vp−2)}(1− w)]−(νH−1)/2

× dv1dv2 . . . dvp−1, (3)

where Γp[a] = πp(p−1)/4
∏p

i=1 Γ(a − (i − 1)/2) is the multivariate gamma function, see Muirhead
(1982, pp. 61-62). Note the distribution of U can be found as a function of the distribution of W
(and vice versa), just change the rules of νH and νE . This is, by making the transformation

(νH , νE) → (νE , νH)

Observe in Wilks’s notation the density of U can be obtained form the density of W by making the
transformation

(N − p, p− 1) → (p− 1, N − p)

here it is detected again the error above-mentioned in the density of W . This equivalency can be
easily seen by replacing particular values of νH and νE in the densities of U and W , derived by
Hsu (1940) form the joint density of the eigenvalues of the θ’s. For proving this equivalency, let us
denote the density of Θ = (θ1, . . . , θs)′ by p(Θ; s,m, h), where m and h are functions of νH , νE , p,
see Muirhead (1982, pp. 451 and 454-455) or Dı́az-Garćıa and Gutiérrez-Jáimez (1997). See also
Srivastava & Khatri (1979, Theorem 3.6.2, p. 93)2.

Now, it is known that Λ ∼ Wilks’s Λ. If Θ∗ = ((1− θ1), . . . , (1− θs))
′ = (θ∗1 , . . . , θ∗s)′, the

distribution of Θ∗is the same as that of Θ, by interchanging m and h, see Nanda (1948, Section 5).
Then,

Λ∗ =
s∏

i=1

θ∗i ∼ Wilks’s Λ, with m and h interchanged

but note Λ∗ = U . Therefore,

U ∼ Wilks’s Λ, with m and h interchanged

Given that m = (|νH − p|− 1)/2 and h = (νE − p− 1)/2, see Nanda (1948), Pillai (1955) or Rencher
(1995, p. 165). But νE > p and νH ≥ p or νH < p, then the interchange of m and h is equivalent
to the interchange of νH and νE .

In summary,

Theorem 2.1. The distribution of U -statistics, can be obtained from the distribution of the Λ-
statistics, by interchanging νH and νE; this is

UνH ,νE

d= ΛνE ,νH

where d= denotes equally distributed.

2But first note some minor errors appear there: the exponent of π must be p2/2 instead of p/2 and the exponent
of the li should be (n2 − p− 1)/2 in place of (n2 − p− 1).
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Note, in general, all the distributions of the test statistics and the tabulation of the correspondents
critical values are assuming that p ≤ νH ; if p > νH the associated densities and their respective
critical values can be obtained by making the following transformations in the parameters, see
Muirhead (1982, eq. (7), p. 455), Srivastava & Khatri (1979, p. 96) or Rencher (1995, p. 167),

(p, νH , νE) → (νH , p, νE + νH − p)

3. Third Wilks’s statistics. S-statistics. Wilks’s S-statistics have been used rare, maybe
because its exact and asymptotic distribution have not been derived and of course no tables of its
critical values have been constructed, except the Table H in Olson (1973) where the critical values
were obtained via Monte Carlo. Recently that statistics have been used in the context of the sensi-
bility analysis in regression, see Dı́az-Garćıa et al. (2005). In fact, Wilks never found its particular
distribution. But the k-moments were derived and a suggestion for determine its distribution was
given starting from general expressions eqs. (13) and (16), see Wilks (1932). However the equation
(16) contains two errors; the first one we think is a typographic error and the second one appeared
when the integration respect to the θ’s (in Wilks’s notation) where carried out. In notation of Wilks
(1932), the errors in the expression (16) are respectively

1. typographic error: the exponent of (1 + ψ) must be−((M + N)/2 − n) instead of −((M +
n)/2− n), and

2. the argument in the gamma function of the numerator should be (M + N)/2 − i in place of
(M + N − 1− i)/2

Then, the right density function of the S-statistics is (in our notation)

fS(s) =
πp(p−1)/2Qp

i=1(Γ[(νH + νE)/2− i + 1])

Γp[νH/2]Γp[νE/2]
s(νH−p−1)/2 (1 + s)−((νH+νE)/2−p+1)

×
Z 1

0

· · ·
Z 1

0

(
1−

Qp−1
i=1 (1− ri)

1 + s
−
"
1−

p−1Y
i=1

(1− ri)−
Qp−1

i=1 ri

1 + s

#)−((νH+νE)/2−p+1)

×
p−1Y
i=1

[ri(1− ri)]
(νH+νE)/2−(p+i)/2dr1dr2 . . . dr(p−1), s > 0

thus we have that
1−∏p−1

i=1 (1− ri)−
Qp−1

i=1 ri

1+s

1−
Qp−1

i=1 (1−ri)

1+s

< 1

and ∏p−1
i=1 (1− ri)

1 + s
< 1

for ri ∈ [0, 1] and s > 0. This allows to expand in a double series of powers the term between brace
and later integrating term by term.

• For p = 1 we get

fS(s) =
Γ[(νH + νE)/2]
Γ[νH/2]Γ[νE/2]

s(νH−2)/2 (1 + s)−(νH+νE)/2, s > 0
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• For p = 2 we have

fS(s) = k2 s(νH−3)/2

Z 1

0

[(1− r1)s + r1]
−(νH+νE−2)/2[r1(1− r1)]

(νH+νE−3)/2dr1, s > 0

k2 =
Γ[(νH + νE)/2]Γ[(νH + νE − 2)/2]

Γ[νH/2]Γ[(νH − 1)/2]Γ[νE/2]Γ[(νE − 1)/2]

• For p = 3 we obtain

fS(s) = k3 s(νH−4)/2

Z 1

0

Z 1

0

[(1− r1)(1− r2)s + r1r2]
−(νH+νE−4)/2[r1(1− r1)]

(νH+νE−4)/2

×[r2(1− r2)]
(νH+νE−5)/2dr1dr2, s > 0

k3 =
Γ[(νH + νE)/2]Γ[(νH + νE − 2)/2]Γ[(νH + νE − 4)/2]

Γ[νH/2]Γ[(νH − 1)/2]Γ[(νH − 2)/2]Γ[νE/2]Γ[(νE − 1)/2]Γ[(νE − 2)/2]

• And for p = 4 we get

fS(s) = k4 s(νH−5)/2

Z 1

0

Z 1

0

Z 1

0

[(1− r1)(1− r2)(1− r3)s + r1r2r3]
−(νH+νE−6)/2

×[r1(1− r1)]
(νH+νE−5)/2[r2(1− r2)]

(νH+νE−6)/2[r3(1− r3)]
(νH+νE−7)/2dr1dr2, s > 0

k4 =
Γ[(νH + νE)/2]Γ[(νH + νE − 2)/2]Γ[(νH + νE − 4)/2]Γ[(νH + νE − 6)/2]

Γ[νH/2]Γ[(νH − 1)/2]Γ[(νH − 2)/2]Γ[(νH − 3)/2]Γ[νE/2]Γ[(νE − 1)/2]Γ[(νE − 2)/2]Γ[(νE − 3)/2]

Alternatively, the exact distribution of the S-statistics can be determined via the approach of
Hsu (1940), i.e. by the joint distribution of the λ’s. In particular a simplified expression for p = 2
can be obtained as follows: from Muirhead (1982, pp. 451 and 454-455) we have that

fλ1,λ2(λ1, λ2) = k (λ1λ2)(νH−3)/2[(1 + λ1)(1 + λ2)]−(νH+νE)/2(λ1 − λ2)

where

k =
πΓ2[(νH + νE)/2]
Γ2[νH/2]Γ2[νE/2]

;

if we define S = λ1λ2 and R = (1 + λ1)(1 + λ2), then dsdr = (λ1 − λ2)dλ1dλ2. Thus

fS,R(s, r) = k s(νH−3)/2r−(νH+νE)/2

by integrating with respect to R ranging from (1 +
√

s) to ∞ we get the density function

fS(s) = k∗2 s(νH−3)/2
(
1 +

√
s
)−(νH+νE−2)

, s > 0

with

k∗2 =
2k

(νH + νE − 2)
=

2
√

π Γ[(νH + νE)/2]Γ[(νH + νE − 1)/2]
(νH + νE − 2)Γ[νH/2]Γ[(νH − 1)/2]Γ[νE/2]Γ[(νE − 1)/2]
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A third approach for deriving the distribution of the U -statistics is based on the Mellin trans-
formation proposed by Consul (1966). From Wilks (1932, p. 486) (in our notation),

E(Sh) =
Γp[νH/2 + h]Γp[νE/2 + h]

Γp[νH/2]Γp[νH/2]
.

Then the exact density function of S is

fS(s) =
1

Γp[νH/2]Γp[νH/2]
1

2π i

∫ c′+i∞

c′−i∞
s−h−1Γp[νH/2 + h]Γp[νE/2 + h]dh

which, on putting h + (νE + 1− p)/2 = t, we obtain

fS(s) =
s(νE−1−p)/2

Γp[νH/2]Γp[νH/2]
1

2π i

∫ c+i∞

c−i∞
s−tΓp[t− (νE − νH + 1− p)/2]Γp[νE − t + (1− p)/2]dt

4. Exact distribution of new Pillai criterion, W (s). Pillai (1955) proposed another test
criterion and its approximated distribution, apart from the other three criteria exposed in that
work. The new criterion is defined like this

W (s) = 1− V (s)/s =
s−∑s

i=1 θi

s
=

∑s
i=1(1− θi)

s

where V (s) is the Pillai’s statistics, see Rencher (1995, p. 166) or Seber (1984, p. 414), among many
others. Then

sW (s) =
s∑

i=1

(1− θi) = tr(SE(SE + SH)−1).

Now, as in Section 2, a similar result for the exact distribution of the W (s)-statistics can be derived
Exactly as before, if Θ∗ = ((1− θ1), . . . , (1− θs))

′ = (θ∗1 , . . . , θ∗s)′, the distribution of Θ∗ is the
same as that of Θ, by interchanging m and h

sV (s)∗ =
s∑

i=1

θ∗i ∼ Pillai’s V (s), with m and h interchanged

and by noting that sV (s)∗ = sW (s), we have

sW (s) ∼ Pillai’s V (s), with m and h interchanged

In summary,

Theorem 4.2. The distribution of the W (s)-statistics can be obtained from the distribution of
V (s)-statistics, by interchanging νH and νE. This is

W (s)
νH ,νE

d=
1
s

V (s)
νE ,νH

Note, this behavior of the parameters can be seen in the approximated distributions of both
statistics given in Pillai (1955, eqs. (5) and (6), respectively).

5. Exact distribution of the Dempster criterion. For the case of one or two samples Dempster
(1958) and Dempster (1960) propose a non exact proof for testing the hypothesis (2). For the general
case (p > 2), Fujikoshi et al. (2004) propose the following statistics

TD = (trSH)/(trSE)
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which is termed Dempster trace criterion.
Dempster’s criterion is rarely used, it is difficult to find a book at least refereing it. Perhaps, this

is given because its exact and asymptotic distribution are in terms of the matrix of parameters Σ.
Fujikoshi et al. (2004) derive asymptotic null and nonnull distributions of Dempster trace criterion

when n →∞ and p →∞. They prove that

T̃D

σD

d→ N (0, 1), (4)

where d→ denotes convergence in distribution, and

T̃D =
√

p

{
n

trSH

trSE
− νH

}
,

and

σD =

√
2νH

(
trΣ2

)
/p

(trΣ)/p
.

For a practical situation, an (n, p)-consistent estimator is given by

σ̂D =

√
2νH{(trS2

E)/n2 − (trSE)2/n3}/p

(trSE)/(np)

Next we derive the exact null distribution and the moments of Dempster trace criterion.

Theorem 5.3. When νH > p− 1 and νE > p− 1, the exact null distribution of TD is

fTD
(t) = |δ−1Σ|−(νH+νE)/2

∞∑

k=0

∞∑

l=0

βII(t; (pνH + 2k)/2, (pνE + 2l)/2)
k! l!

×
∑

κ

∑
µ

(
1
2
νH

)

κ

(
1
2
νE

)

µ

Cκ

(
I− δΣ−1

)
Cµ

(
I− δΣ−1

)
, t > 0

where βII(t; b, c) denote the density function of a univariate type II beta distribution of parameters
b and c;

∑
κ denotes summation over all partition κ = (k1, . . . , kp), k1 ≥ · · · ≥ kp ≥ 0, of k, Cκ(X)

is the zonal polynomial of X corresponding to κ and the generalised hypergeometric coefficient (a)κ

is given by

(a)κ =
p∏

i=1

(a− (i− 1)/2)ki

(r)k = r(r + 1) · · · (r + k − 1), (a)0 = 1 (see Muirhead (1982, 258))and δ ∈ (0,∞) is an arbitrary
parameter. Muirhead (1982, p. 341) propose to δ = 2δ1δp/(δ1 + δp) as a close value to the optimal,
where δ1, δp are the largest and smallest eigenvalue of Σ respectively.

Proof. Remember that SH ∼ Wp(νH ,Σ) and SE ∼ Wp(νE ,Σ) are independent. Let X = trSH

and Y = trSE , then X and Y are independent too. Using Theorem 8.3.4 in Muirhead (1982, p.
339), the joint density function of X and Y is

fX,Y (x, y) = |δ−1Σ|−(νH+νE)/2
∞∑

k=0

∞∑

l=0

1
k! l!

g(x; pνH/2 + k, 2δ)g(y; pνE/2 + k, 2δ)
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×
∑

κ

∑
µ

(
1
2
νH

)

κ

(
1
2
νE

)

µ

Cκ

(
I− δΣ−1

)
Cµ

(
I− δΣ−1

)
,

where

g(x; r, 2δ) =
exp(−x/(2δ))xr−1

(2δr)Γ[r]
.

Making the change of variables

TD = X/Y, Z = X (TD > 0, Z > 0)

with dxdy = zdzdt, the joint density function of TD and Z is

fTD,Z(t, z) = |δ−1Σ|−(νH+νE)/2
∞∑

k=0

∞∑

l=0

z

k! l!
g(t/z; pνH/2 + k, 2δ)g(z; pνE/2 + k, 2δ)

×
∑

κ

∑
µ

(
1
2
νH

)

κ

(
1
2
νE

)

µ

Cκ

(
I− δΣ−1

)
Cµ

(
I− δΣ−1

)
.

Now integrating with respect to z over z ∈ (0,∞) gives the desired marginal density function of TD.

Corollary 5.1. Observe if in Theorem 5.3, Σ = δI, then

fTD
(t) = βII(t; pνH/2, pνE)/2)

or alternatively
νE

νH
TD ∼ F(pνH , pνE)

where F(b, c) is a central F -distribution with b and c degrees of freedom.

Corollary 5.2. Under the condition of Theorem 5.3 the moments of TD are given by

E(Th
D) = |δ−1Σ|−(νH+νE)/2

∞∑

k=0

∞∑

l=0

Γ[(pνH + 2k)/2 + h]Γ[(pνE + 2l)/2− h]
k! l!Γ[(pνH + 2k)/2]Γ[(pνE + 2l)/2]

×
∑

κ

∑
µ

(
1
2
νH

)

κ

(
1
2
νE

)

µ

Cκ

(
I− δΣ−1

)
Cµ

(
I− δΣ−1

)
.

similarly, if Σ = δI

E(Th
D) =

Γ[pνH/2 + h]Γ[pνE/2− h]
Γ[pνH/2]Γ[pνE/2]

.

Proof. The proof follows easily from the moments of univariate type II beta distribution.

Remark 5.1. Alternative expressions of the density function and the moments of TD given in the
Theorem 5.3 and the Corollary 5.2 can be derived in function of the Invariant Polynomials, Davis
(1980); specifically, by the eq. (5.1) and (5.10) in Davis (1980), the following result are obtained (or
see also Chikuse (1980)):

fTD (t) = |δ−1Σ|−(νH+νE)/2
∞∑

k=0

∞∑

l=0

βII(t; (pνH + 2k)/2, (pνE + 2l)/2)
k! l!
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×
∑

κ

∑
µ

∑

φ∈κ·µ

(
1
2
νH

)

κ

(
1
2
νE

)

µ

(
θκ,µ

φ

)2

Cφ

(
I− δΣ−1

)
, t > 0,

and

E(Th
D) = |δ−1Σ|−(νH+νE)/2

∞∑

k=0

∞∑

l=0

Γ[(pνH + 2k)/2 + h]Γ[(pνE + 2l)/2− h]
k! l!Γ[(pνH + 2k)/2]Γ[(pνE + 2l)/2]

×
∑

κ

∑
µ

∑

φ∈κ·µ

(
1
2
νH

)

κ

(
1
2
νE

)

µ

(
θκ,µ

φ

)2

Cφ

(
I− δΣ−1

)
,

where

θκ,µ
φ =

Cκ,µ
φ (I, I)
Cφ(I)

.

6. Example. The following application is a modification of the example 9.4.3 of Srivastava (2002,
p. 294), where the first two dependent variables Y1 and Y2 are considered. The matrices of sums of
squares and sums of products due to the error and due to hypothesis are, respectively,

SE =
(

255.8029 112.6230
112.6230 415.2567

)
and SH =

(
10.05464 27.55231
27.55231 81.30097

)
.

The test statistics for all de known criteria are tabulated in the Table 1.

Table 1: Criteria to test the null hypothesis

Criteria Statistics α(= 0.05) Critical value
Wilks’s Λ 0.8324688 0.626917
Wilks’s U 0.0005190485 0.0251245
Wilks’s S 0.000623505 0.038469
Lawley-Hotelling’s U (s) 0.2006227 0.5487446
Pillai’s V (s) 0.1680502 0.4156
Pillai’s W (s) 0.9159749 0.7922
Pillai’s H(s) 0.9088337 0.9690216
Pillai’s R(s) 0.006177302 0.9690216
Pillai’s T (s) 0.1678238 3.168246
Roy’s λmax 0.1974652 0.489425
Roy’s θmax 0.1649026 0.3286
Anderson’s λmin 0.04104808 0.1173425
Roy’s θmin 0.003147606 0.105019
Dempster’s TD 0.1361364 0.1825111

Remark 6.2. Some comments about the results in the Table 1:

1. Wilks’s Λ statistics, see Wilks (1932), Rencher (1995, p. 161) and Kres (1983, p. 5) among
many other;

Λ =
|SE |

|SE + SH | =
s∏

i=1

1
1 + λi

=
s∏

i=1

(1− θi)

The critical value was taken from table 1 in Kres (1983, pp. 14-51), besides, it was computed
with the expression (3) by using the software called Mathematica.
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2. Wilks’s U statistics, see Wilks (1932), Roy et al. (1971, p. 72), Seber (1984, p. 413) and Kres
(1983, p. 6) among many other;

U =
|SH |

|SE + SH | =
s∏

i=1

λi

1 + λi
=

s∏

i=1

θi

This criterion is also known as Gnanadesikan’s U statistics. The critical value was computed
with the expression (31) in Wilks (1932) by the use of Mathematica. Observe, also, this
statistics is wrong defined as a function of the eigenvalues λ’s and θ’s in Kres (1983, p.6).

3. Wilks’s S statistics, see Wilks (1932), Olson (1974) and Kres (1983, p. 8)

S =
|SH |
|SE | =

s∏

i=1

λi =
s∏

i=1

θi

(1− θi)

Remember that this statistics is also known as Olson’s S statistics. The critical values was
computed by the use of Mathematica.

4. Lawley-Hotelling’s U (s) statistics, see Muirhead (1982, p. 466), Rencher (1995, 167) and Kres
(1983, p. 6) among many others;

U (s) = tr(S−1
E SH) =

s∑

i=1

λi =
s∑

i=1

θi

(1− θi)

Unfortunately, the tables for the critical values do not include the minimum required possible
combinations between de parameters s, m and h; see Table 6 in Kres (1983, pp.118-135). For
the example we use an F approximation, see equation (6.30) in Rencher (1995, p. 167), see
also Pillai (1955, eq. (7)). Observe this approximation is satisfactory for practical use for
h + s ≥ 30 when s = 2; when s increases by 1, h + s must increase by 10 to give a satisfactory
results.

5. Pillai’s V (s) statistics, see Muirhead (1982, p. 466), Rencher (1995, 168) and Kres (1983, p.
6) among many others;

V (s) = tr((SE + SH)−1SH) =
s∑

i=1

λi

(1 + λi)
=

s∑

i=1

θi

The critical values was taken from Table 7 in Kres (1983, pp. 136-153).

6. Pillai’s W (s) statistics, see Pillai (1955);

W (s) = tr((SE + SH)−1SE) =
s∑

i=1

1
(1 + λi)

=
s∑

i=1

(1− θi) = (1− V (s)/s)

For the critical values we can use a type I beta approximation, see equation (6) in Pillai (1955).
For practical use, this approach is satisfactory for m+h ≥ 30 when s = 2; but, if s increases by
1 then, m+h must be increased by 10, for getting satisfactory results. However, note the exact
critical value can be obtained from V (s)-statistics and the expression W (s) = (1− V (s)/s). In
fact, Table 1 contains the exact value.
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7. Pillai’s H(s) statistics, see Pillai (1955) and Kres (1983, p. 8);

H(s) =
s∑s

i=1(1 + λi)
= s

{
s∑

i=1

(1− θi)−1

}−1

= (1 + U (s)/s)−1

The critical values was obtained using a type I beta approximation, see equation (9) in Pillai
(1955). Here we have to apply the above mentioned practical conditions for the correct use of
the approximation of the U (s) statistics.

8. Pillai’s R(s) statistics, see Pillai (1955) and Kres (1983, p. 8);

R(s) =
s∑s

i=1
1+λi

λi

= s

{
s∑

i=1

θ−1
i

}−1

= (1 + U
′(s)/s)−1

where U
′(s) is the same U (s) but with m and h interchanged. For this criterion, the critical

values are computed using a type I beta approximation, see equation (11) in Pillai (1955).
Again, the same conditions explained before for W (s) statistics have to be applied for a satis-
factory result in the approximations. Besides, we need the conditions m ≥ 0, or |νH − p| ≥ 1
for getting satisfactory approximation. The last condition was not considered by Pillai (1955),
but it is required, because for a beta distribution β(a, b) it is known that a > 0, which is
guaranteed when m ≥ 0 in the approximation.

9. Pillai’s T (s) statistics, see Pillai (1955) and Kres (1983, p. 8);

T (s) = s

{
s∑

i=1

λ−1
i

}−1

=
s∑s

i=1
1−θi

θi

=
R(s)

1−R(s)

The critical values was obtained using a type II beta approximation, see equation (13) in Pillai
(1955). Again, we use the same for rules of R(s) statistics for a satisfactory approximation
including the restriction over m.

10. Roy’s λmax, see Roy (1957) and Kres (1983, p. 7);

λmax =
θmax

1− θmax

The critical values were obtained from table 3 in Kres (1983, pp. 62-86). Besides, we got the
critical value by integrating the joint distribution of the λ’s via Mathematica.

11. Roy’s θmax, see Roy (1957), Muirhead (1982, p. 481), Rencher (1995, p. 164) and Kres (1983,
p. 7) among many others;

θmax =
λmax

1 + λmax

For this criterion the critical values can be obtained from table 2, 4 or 5 in Kres (1983, pp.
52-61, 87-104 and 105-117, respectively). Again, Mathematica was used for finding the critical
value of that criterion by integrating the joint distribution of the eigenvalues θ’s.

12. Anderson’s λmin, see Roy (1957), Anderson (1982) and Kres (1983, p. 7) among many others;

λmin =
θmin

1− θmin

As above, the critical values were computed via Mathematica by integrating the joint distribu-
tion of the eigenvalues λ’s. However, note the critical value can be determined as a function
of the critical value for θmin.

11



13. Roy’s θmin, see Pillai (1955) and Roy (1957);

θmin =
λmin

1 + λmin

Similarly to Anderson’s criterion, the integration of the joint distribution of the eigenvalues
λ’s via Mathematica gave the critical values. However those values can be obtained from the
distribution of θmax by θmin(α, s, νH , νE) = 1 − θmax(α, s, νE , νH), see Nanda (1948), but,
again, the published tables do not allow to read the values because, they do not incorporate
such combination of the parameters; in fact there are a lot of similar particular cases for which
the critical value can not be found from those tables.

14. Dempster’s TD, see Dempster (1958), Dempster (1960) and Fujikoshi et al. (2004);

TD = (trSH)/(trSE)

In this criterion, the critical value was obtained using the normal approximation (4).

15. General remark:

(a) In general, the decision rule for all criteria is:
reject H0 if the statistics ≥ critical value

However, for Wilks’s Λ and Pillai’s W (s) criteria, the decision rule is (this class of test
are known in statistical literature as inverse test, see Rencher (1995, p. 162)):

reject H0 if the statistics ≤ critical value.

(b) In general, the tables for critical values of all the criterion are tabulated in terms of the
parameters (p, νH , νE) or in terms of the parameters (s,m, h), where

s = min(p, νH), m = (|νH − p| − 1)/2 and h = (νE − p− 1)/2.

Besides, the tables (in general) have been computed by assuming that p ≤ νH and p ≤
νE . If p > νH then use the combination of parameters (νH , p, νE + νH − p) in place of
(p, νH , νE), see Muirhead (1982, eq. (7), p. 455), Srivastava & Khatri (1979, p. 96) or
Rencher (1995, p. 167).

(c) Finally, observe the null hypothesis is not rejected under any criterion.
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México Colombia
E-mail: jadiaz@uaaan.mx E-mail: fjcaro@matematicas.udea.edu.co

14


